Sains Malaysiana 54(11)(2025): 2675-2684
http://doi.org/10.17576/jsm-2025-5411-08
Mitochondrial Genome Sequencing in
Marine Bivalves: Progress, Applications, Challenges and Future Directions
(Penjujukan Genom Mitokondria dalam Bivalvia Marin: Kemajuan, Aplikasi, Cabaran dan Hala Tuju Masa Depan)
MOHAMAD QAMARUL ABIDIN MOHD ZAWAWI &
KAMARUL RAHIM KAMARUDIN*
Centre of Research for Sustainable Uses of Natural Resources
(SUNR), Faculty of Applied Sciences and Technology (FAST), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Campus, Pagoh Education Hub, Km 1, Jalan Panchor,
84600 Muar, Johor, Malaysia
Received: 14 May 2025/Accepted: 7 November 2025
Abstract
Mitochondrial
genome sequencing has become a vital tool for understanding marine bivalve evolution,
genetics, and adaptation. This review highlights advances from Sanger to next-
and third-generation sequencing, which have improved the accuracy and efficiency
of mitogenome studies. These developments have uncovered unique features such
as doubly uniparental inheritance (DUI) and extensive gene rearrangements,
deepening insights into bivalve evolution, phylogenetics, conservation, and
aquaculture. Mitogenomics aids in species
identification, population analysis, and selective breeding for traits like
disease resistance. Despite challenges such as complex architectures,
annotation gaps, and unusual inheritance like DUI, emerging technologies such
as single-cell sequencing, CRISPR, and omics integration offer new
opportunities. As data sharing and collaboration expand, mitochondrial genomics
will continue shaping marine conservation and sustainable aquaculture.
Keywords: Aquaculture; bivalvia; conservation genetics;
mitochondrial genome sequencing; phylogenetics
Abstrak
Penjujukan genom mitokondrion telah menjadi alat penting dalam memahami evolusi, genetik dan penyesuaian bivalvia marin. Ulasan ini mengetengahkan kemajuan daripada kaedah Sanger kepada penjujukan generasi baharu dan generasi ketiga yang telah meningkatkan ketepatan serta kecekapan kajian mitogenom. Perkembangan ini telah mendedahkan ciri unik seperti pewarisan seinduk berganda (DUI) dan penyusunan semula gen yang ketara, sekali gus memperkukuh pemahaman tentang evolusi bivalvia, filogenetik, pemuliharaan dan akuakultur. Mitogenom membantu dalam pengecaman spesies, analisis struktur populasi dan pembiakan terpilih bagi ciri seperti ketahanan penyakit. Meskipun berdepan cabaran berkaitan kerumitan seni bina genom, jurang anotasi dan corak pewarisan luar biasa seperti DUI, kemunculan teknologi baharu seperti penjujukan sel tunggal, CRISPR dan integrasi pelbagai omik menawarkan peluang baharu. Dengan perluasan inisiatif perkongsian data dan kerjasama penyelidikan, genom mitokondrion dijangka terus memacu kemajuan dalam pemuliharaan marin dan amalan akuakultur yang mampan.
Kata kunci: Akuakultur; bivalvia; filogenetik; pemuliharaan genetik; penjujukan genom mitokondria
REFERENCES
Abicht, A., Scharf, F., Kleinle, S., Schön, U., Holinski-Feder, E., Horvath, R., Benet-Pagès,
A., & Diebold, I. 2018. Mitochondrial and nuclear disease panel
(Mito‐aND‐Panel): Combined sequencing of
mitochondrial and nuclear DNA by a cost‐effective and sensitive
NGS‐based method. Molecular Genetics & Genomic Medicine 6:
1188-1198. https://doi.org/10.1002/mgg3.500
Arteche-López, A., Avila-Fernandez, A., Romero, R.,
Riveiro-Alvarez, R., López-Martínez, M., Gimenez-Pardo, A., Vélez-Monsalve, C.,
Gallego-Merlo, J., Garcia-Vara, I., Almoguera, B.,
Bustamante-Aragonés, A., Blanco-Kelly, F., Tahsin-Swafiri, S., Rodríguez‐Pinilla, E., Mínguez, P., Lorda, I., Trujillo-Tiebas, M. & Ayuso, C. 2021. Sanger sequencing is no
longer always necessary based on a single-center validation of 1109 NGS variants in 825 clinical exomes. Scientific Reports 11: 5697. https://doi.org/10.1038/s41598-021-85182-w
Athanasopoulou, K., Boti, M.A., Adamopoulos,
P.G., Skourou, P.C. & Scorilas,
A. 2022. Third-generation sequencing: The spearhead towards the radical
transformation of modern genomics. Life 12(1): 30. https://doi.org/10.3390/life12010030
Baeza, J.A., Minish, J.J. & Michael, T.P. 2024. Assembly of mitochondrial
genomes using nanopore long-read technology in three sea chubs (Teleostei: Kyphosidae). Molecular Ecology Resources 25: e14034. https://doi.org/10.1111/1755-0998.14034
Biscotti, M.A, Barucca, M. & Canapa, A. 2018. New insights into the genome repetitive
fraction of the Antarctic bivalve Adamussium colbecki. PLoS ONE 13(3): e0194502. https://doi.org/10.1371/journal.pone.0194502
Breton, S., Beaupré, H.D., Stewart, D.T., Piontkivska, H., Karmakar, M., Bogan, A.E., Blier,
P.U. & Hoeh, W.R. 2009. Comparative mitochondrial genomics of freshwater
mussels (Bivalvia: Unionoida) with doubly uniparental
inheritance of mtDNA: Gender-specific open reading
frames and putative origins of replication. Genetics 183(4): 1575-1589. https://doi.org/10.1534/genetics.109.110700
Calus, S.T., Ijaz, U.Z. & Pinto, A.J. 2018. NanoAmpli-Seq:
A workflow for amplicon sequencing for mixed microbial communities on the
nanopore sequencing platform. GigaScience 7(12):
giy140. https://doi.org/10.1093/gigascience/giy140
Capt, C., Bouvet, K., Guerra, D., Robicheau, B.M., Stewart, D.T.,
Pante, E. & Breton, S. 2020. Unorthodox features in two venerid bivalves
with doubly uniparental inheritance of mitochondria. Scientific Reports 10: 1087. https://doi.org/10.1038/s41598-020-57975-y
Celaj, A., Markle, J., Danska, J. &
Parkinson, J. 2014. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome 2: 39. https://doi.org/10.1186/2049-2618-2-39
Cheng, C., Fei, Z. & Xiao, P. 2023. Methods to improve the
accuracy of next-generation sequencing. Frontiers in Bioengineering and
Biotechnology 11: 982111. https://doi.org/10.3389/fbioe.2023.982111
De Maio, N., Shaw, L.P., Hubbard, A., George, S., Sanderson, N.D.,
Swann, J., Wick, R., AbuOun, M., Stubberfield, E., Hoosdally, S., Crook, D.W., Peto, T.E.A., Sheppard, A.E.,
Bailey, M.J., Read, D.S., Anjum, M.F., Walker, A.S. & Stoesser, N. On
behalf of the Rehab Consortium. 2019. Comparison of long-read sequencing
technologies in the hybrid assembly of complex bacterial genomes. Microbial
Genomics 5(9): e000294. https://doi.org/10.1099/mgen.0.000294
Feng, J., Guo, Y., Yan, C., Ye, Y., Yan, X., Li, J., Xu, K., Guo,
B. & Lü, Z. 2021. Novel gene rearrangement in the
mitochondrial genome of Siliqua minima (Bivalvia, Adapedonta)
and phylogenetic implications for Imparidentia. PLoS ONE 16(4): e0249446. https://doi.org/10.1371/journal.pone.0249446
Fernández-Pérez, J., Nantón, A., Arias-Pérez, A., Freire, R.,
Martínez-Patiño, D. & Méndez, J. 2018. Mitochondrial DNA analyses of Donax trunculus (Mollusca: Bivalvia) population structure in the Iberian Peninsula, a bivalve
with high commercial importance. Aquatic Conservation: Marine and Freshwater
Ecosystems 28(5): 1139-1152. https://doi.org/10.1002/aqc.2929
Fernández-Pérez, J., Nantón, A., Ruiz-Ruano, F., Camacho, J.P.M.
& Méndez, J. 2017. First complete female mitochondrial genome in four
bivalve species genus Donax and their phylogenetic relationships within
the Veneroida order. PLoS ONE 12(9): e0184464. https://doi.org/10.1371/journal.pone.0184464
Ferrarini, M., Moretto, M., Ward, J.A., Šurbanovski,
N., Stevanović, V., Giongo, L., Viola, R., Cavalieri, D., Velasco, R.,
Cestaro, A. & Sargent, D.J. 2013. An evaluation of the PacBio RS platform
for sequencing and de novo assembly of a chloroplast genome. BMC
Genomics 14: 670. https://doi.org/10.1186/1471-2164-14-670
Ferreira, T. & Rodriguez, S. 2024. Mitochondrial DNA: Inherent complexities
relevant to genetic analyses. Genes 15(5): 617. https://doi.org/10.3390/genes15050617
Fukasawa, Y., Ermini, L., Wang, H., Carty, K.
& Cheung, M. 2020. LongQC: A quality control tool
for third generation sequencing long read data. G3 (Bethesda) 10(4):
1193-1196. https://doi.org/10.1534/g3.119.400864 Erratum in G3 (Bethesda). 2020. 10(11): 4295. doi: 10.1534/g3.120.401778
Gaitán‐Espitia, J.D., Quintero‐Galvis, J.F., Mesas, A.
& D’Elía, G. 2016. Mitogenomics of southern hemisphere blue mussels (Bivalvia: Pteriomorphia):
Insights into the evolutionary characteristics of the Mytilus edulis complex. Scientific Reports 6: 26853. https://doi.org/10.1038/srep26853
Gerdol, M., Moreira, R., Cruz, F., Gómez-Garrido, J., Vlasova, A., Rosani, U., Venier, P., Naranjo-Ortiz, M.A., Murgarella, M., Greco, S., Balseiro, P., Corvelo, A.,
Frias, L., Gut, M., Gabaldón, T., Pallavicini, A., Canchaya,
C., Novoa, B., Alioto, T.S., Posada, D. & Figueras, A. 2020. Massive gene
presence-absence variation shapes an open pan-genome in the Mediterranean
mussel. Genome Biology 21: 275. https://doi.org/10.1186/s13059-020-02180-3
Harrison, R.G. 1989. Animal mitochondrial DNA as a genetic marker
in population and evolutionary biology. Trends in Ecology & Evolution 4(1):
6-11. https://doi.org/10.1016/0169-5347(89)90006-2
Harvey, N.R., Albury, C.L., Stuart, S., Benton, M.C., Eccles, D.A.,
Connell, J.R., Sutherland, H.G., Allcock, R.J.N., Lea, R.A., Haupt, L.M. &
Griffiths, L.R. 2019. Ion torrent high throughput mitochondrial genome
sequencing (HTMGS). PLoS ONE 14(11):
e0224847. https://doi.org/10.1371/journal.pone.0224847
Hein, S.R., Farleigh, K. & Berg, D.J. 2024. Riverscape genomics
of the endangered freshwater mussel Lampsilis rafinesqueana. Freshwater Biology 69(10):
1438-1453. https://doi.org/10.1111/fwb.14317
Holt, C.L., Stephens, K.M., Walichiewicz, P., Fleming, K.D., Forouzmand, E. & Wu, S. 2021. Human mitochondrial
control region and mtGenome: Design and forensic
validation of NGS multiplexes, sequencing and analytical software. Genes 12(4): 599. https://doi.org/10.3390/genes12040599
Hu, T., Chitnis, N., Monos, D. &
Dinh, A. 2021. Next-generation sequencing technologies: An overview. Human Immunology 82(11): 801-811. https://doi.org/10.1016/j.humimm.2021.02.012
Hui, M., Nuryanto, A. & Kochzius, M.
2016. Concordance of microsatellite and mitochondrial DNA markers in detecting
genetic population structure in the boring giant clam Tridacna crocea across the Indo‐Malay Archipelago. Marine
Ecology 38(1): e12389. https://doi.org/10.1111/MAEC.12389
Iannello, M., Bettinazzi, S., Breton, S., Ghiselli, F. &
Milani, L. 2021. A naturally heteroplasmic clam
provides clues about the effects of genetic bottleneck on paternal mtDNA. Genome Biology and Evolution 13(3): evab022. https://doi.org/10.1093/gbe/evab022
Jiang, S., Li, Z., Li, J., Xu, K. & Ye, Y.
2024. Analysis of genetic diversity and structure of eight populations of Nerita yoldii along
the Coast of China based on mitochondrial COI gene. Animals
(Basel) 14(5): 718. doi: 10.3390/ani14050718
Jung, H., Winefield, C., Bombarely, A., Prentis, P. & Waterhouse, P. 2019. Tools
and strategies for long-read sequencing and de novo assembly of plant
genomes. Trends in Plant Science 24(8): 700-724. https://doi.org/10.1016/j.tplants.2019.05.003
Katsares, V., Tsiora, A., Galinou-Mitsoudi, S.
& Imsiridou, A. 2008. Genetic structure of the
endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63: 412-417. https://doi.org/10.2478/s11756-008-0061-8
Kinkar, L., Gasser, R.B., Webster, B.L., Rollinson, D., Littlewood,
D.T.J., Chang, B.C.H., Stroehlein, A.J., Korhonen, P.K. & Young, N.D. 2021.
Nanopore sequencing resolves elusive long tandem-repeat regions in
mitochondrial genomes. International Journal of Molecular Sciences 22(4):
1811. https://doi.org/10.3390/ijms22041811
Klirs, Y., Novosolov, M., Gissi, C., Garić, R., Pupko,
T., Stach, T. & Huchon, D. 2024. Evolutionary insights from the
mitochondrial genome of Oikopleura dioica: Sequencing challenges, RNA editing, gene
transfers to the nucleus, and tRNA loss. Genome Biology and Evolution 16(9): evae181. https://doi.org/10.1093/gbe/evae181
Kraft, F. & Kurth, I. 2020. Long-read sequencing to understand
genome biology and cell function. The International Journal of Biochemistry
& Cell Biology 126: 105799. https://doi.org/10.1016/j.biocel.2020.105799
Kumar, K.R., Cowley, M.J. & Davis, R.L. 2019. Next-generation
sequencing and emerging technologies. Seminars in Thrombosis and Hemostasis 45(7): 661-673. https://doi.org/10.1055/s-0044-1786397
Lang, B.F., Beck, N., Prince, S., Sarrasin, M., Rioux, P. & Burger,
G. 2023. Mitochondrial genome annotation with MFannot:
A critical analysis of gene identification and gene model prediction. Frontiers
in Plant Science 14. https://doi.org/10.3389/fpls.2023.1222186
Le Cam, S., Brémaud, J., Malkócs, T., Kreckelbergh, E., Becquet, V., Dubillot, E., Garcia, P., Breton, S. &
Pante, E. 2023. LAMP‐based molecular sexing in a gonochoric marine
bivalve (Macoma balthica rubra) with divergent sex‐specific mitochondrial genomes. Ecology
and Evolution 13: e10320. https://doi.org/10.1002/ece3.10320
Lee, Y., Kwak, H., Shin, J., Kim, S., Kim, T. & Park, J. 2019.
A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Molecular Phylogenetics and Evolution 139: 106533. https://doi.org/10.1016/j.ympev.2019.106533
Lee, Y., Ni, G., Shin, J., Kim, T., Kern, E.M.A., Kim, Y., Kim,
S.C., Chan, B., Goto, R., Nakano, T. & Park, J.K. 2021. Phylogeography of Mytilisepta virgata (Mytilidae: Bivalvia) in the northwestern Pacific: Cryptic mitochondrial
lineages and mito-nuclear discordance. Molecular
Phylogenetics and Evolution 157: 107037. https://doi.org/10.1016/j.ympev.2020.107037
Legati, A., Zanetti, N., Nasca, A., Peron, C., Lamperti, C., Lamantea, E. & Ghezzi, D. 2021. Current and new
next-generation sequencing approaches to study mitochondrial DNA. The
Journal of Molecular Diagnostics 23(6): 732-741. https://doi.org/10.1016/j.jmoldx.2021.03.002
Li, F., Zhang, Y., Zhong, T., Heng, X., Ao, T., Gu, Z., Wang, A.,
Liu, C. & Yang, Y. 2023. The complete mitochondrial genomes of two rock
scallops (Bivalvia: Spondylidae) indicate extensive gene rearrangements and
adaptive evolution compared with Pectinidae. International
Journal of Molecular Sciences 24(18): 13844. https://doi.org/10.3390/ijms241813844
Li, Y., Altamia, M.A., Shipway, J.R.,
Brugler, M.R., Bernardino, Â.F., De Brito, T.L., Lin, Z., Da Silva Oliveira,
F.A., Sumida, P., Smith, C.R., Trindade-Silva, A., Halanych,
K.M. & Distel, D.L. 2022. Contrasting modes of
mitochondrial genome evolution in sister taxa of wood-eating marine bivalves (Teredinidae and Xylophagaidae). Genome
Biology and Evolution 14(6): evac089. https://doi.org/10.1093/gbe/evac089
Liu, Z.J. & Cordes, J.F. 2004. DNA marker technologies and
their applications in aquaculture genetics. Aquaculture 238(1-4): 1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027
Logsdon, G.A., Vollger, M.R. &
Eichler, E.E. 2020. Long-read human genome sequencing and its applications. Nature
Reviews Genetics 21: 597-614. https://doi.org/10.1038/s41576-020-0236-x
Lubośny, M., Przyłucka, A., Śmietanka, B. & Burzyński, A. 2020. Semimytilus algosus:
First known hermaphroditic mussel with doubly uniparental inheritance of
mitochondrial DNA. Scientific Reports 10: 11256. https://doi.org/10.1038/s41598-020-67976-6
Lucentini, L., Plazzi, F., Sfriso, A.A., Pizzirani, C., Sfriso, A. & Chiesa, S. 2020. Additional taxonomic
coverage of the doubly uniparental inheritance in bivalves: Evidence of
sex-linked heteroplasmy in the razor clam Solen
marginatus, but not in the lagoon cockle Cerastoderma glaucum. Journal of Zoological Systematics and
Evolutionary Research 58(2): 561-570. https://doi.org/10.1111/jzs.12386
Martínez, M., Harms, L., Abele, D. & Held, C. 2023.
Mitochondrial heteroplasmy and PCR amplification bias
lead to wrong species delimitation with high confidence in the South American
and Antarctic marine bivalve Aequiyoldia eightsii species complex. Genes 14(4): 935. https://doi.org/10.3390/genes14040935
Masanja, F., Yang, K., Xu, Y., He, G., Liu, X., Xu, X., Xiaoyan, J., Xin,
L., Mkuye, R., Deng, Y. & Zhao, L. 2023. Impacts
of marine heat extremes on bivalves. Frontiers in Marine Science 10. https://doi.org/10.3389/fmars.2023.1159261
Midha, M., Wu, M. & Chiu, K. 2019. Long-read sequencing in
deciphering human genetics to a greater depth. Human Genetics 138:
1201-1215. https://doi.org/10.1007/s00439-019-02064-y
Olivier, A.V.D.S., Jones, L., Vay, L.L., Christie, M., Wilson, J.
& Malham, S.K. 2018. A global review of the ecosystem services provided by
bivalve aquaculture. Reviews in Aquaculture 12(1): 3-25. https://doi.org/10.1111/RAQ.12301
Ozawa, G., Shimamura, S., Takaki, Y., Yokobori,
S., Ohara, Y., Takishita, K., Maruyama, T., Fujikura,
K. & Yoshida, T. 2017. Updated mitochondrial phylogeny of Pteriomorph and Heterodont bivalvia,
including deep-sea chemosymbiotic Bathymodiolus mussels, vesicomyid clams and the thyasirid clam Conchocele cf. bisecta. Marine Genomics 31: 43-52. https://doi.org/10.1016/j.margen.2016.09.003
Pakendorf, B. & Stoneking, M. 2005. Mitochondrial DNA and human
evolution. Annual Review of Genomics and Human Genetics 6: 165-183. https://doi.org/10.1146/ANNUREV.GENOM.6.080604.162249
Palaiokostas, C. 2021. Predicting for disease resistance in aquaculture species
using machine learning models. Aquaculture Reports 20: 100660. https://doi.org/10.1016/J.AQREP.2021.100660
Pareek, C.S., Smoczyński, R. & Tretyn,
A. 2011. Sequencing technologies and genome sequencing. Journal of Applied
Genetics 52: 413-435. https://doi.org/10.1007/s13353-011-0057-x
Petit-Marty, N., Vázquez‐Luis, M. & Hendriks, I.E. 2020.
Use of the nucleotide diversity in COI mitochondrial gene as an early
diagnostic of conservation status of animal species. Conservation Letters 14(1): e12756. https://doi.org/10.1111/conl.12756
Plazzi, F., Puccio, G. & Passamonti, M.
2016. Comparative large-scale mitogenomics evidences
clade-specific evolutionary trends in mitochondrial DNAs of bivalvia. Genome Biology and Evolution 8(8): 2544-2564. https://doi.org/10.1093/gbe/evw187
Qi, H., Li, L. & Zhang, G. 2021. Construction of a
chromosome‐level genome and variation map for the Pacific oyster Crassostrea
gigas. Molecular Ecology Resources 21(5): 1670-1685. https://doi.org/10.1111/1755-0998.13368
Raghavan, V., Kraft, L., Mesny, F. & Rigerte, L. 2022. A simple guide to de novo transcriptome assembly and annotation. Briefings in Bioinformatics 23(2):
bbab563. https://doi.org/10.1093/bib/bbab563
Runnel, K., Abarenkov, K., Copoț,
O., Mikryukov, V., Kõljalg, U., Saar, I. & Tedersoo,
L. 2022. DNA barcoding of fungal specimens using PacBio long‐read
high‐throughput sequencing. Molecular Ecology Resources 22(8):
2871-2879. https://doi.org/10.1111/1755-0998.13663
Salzberg, S.L. 2019. Next-generation genome annotation: we still
struggle to get it right. Genome Biology 20: 92. https://doi.org/10.1186/s13059-019-1715-2
Schloss, P.D., Jenior, M.L., Koumpouras, C.C., Westcott, S.L. & Highlander, S.K.
2016. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing
system. PeerJ PrePrints 4: e1869. https://doi.org/10.7287/peerj.preprints.778v2
Serb, J.M. & Lydeard, C. 2003.
Complete mtDNA sequence of the North American
freshwater mussel, Lampsilis ornata (Unionidae): An
examination of the evolution and phylogenetic utility of mitochondrial genome
organization in Bivalvia (Mollusca). Molecular Biology and Evolution 20(11): 1854-1866. https://doi.org/10.1093/MOLBEV/MSG218
Smith, C.H. 2021. A high-quality reference genome for a parasitic
bivalve with doubly uniparental inheritance (Bivalvia: Unionida). Genome Biology and Evolution 13(3): evab029. https://doi.org/10.1093/gbe/evab029
Smith, C.H., Mejia-Trujillo, R., Breton, S., Pinto, B.J.,
Kirkpatrick, M. & Havird, J.C. 2023. Mitonuclear sex
determination? Empirical evidence from bivalves. Molecular Biology and
Evolution 40(11): msad240. https://doi.org/10.1093/molbev/msad240
Song, M., Yan, C. & Li, J. 2022. MEANGS: An efficient seed-free
tool for de novo assembling animal mitochondrial genome using whole
genome NGS data. Briefings in Bioinformatics 23(1): bbab538. https://doi.org/10.1093/bib/bbab538
Steeves, L.E., Filgueira, R., Guyondet, T., Chassé, J. & Comeau, L. 2018. Past, present,
and future: Performance of two bivalve species under changing environmental
conditions. Frontiers in Marine Science 5. https://doi.org/10.3389/fmars.2018.00184
Stewart, D.T., Robicheau, B.M., Youssef, N., Garrido-Ramos, M.A.,
Chase, E.E. & Breton, S. 2021. Expanding the search for sperm transmission
elements in the mitochondrial genomes of bivalve mollusks. Genes 12(8): 1211. https://doi.org/10.3390/genes12081211
Tan, E.Y.W., Quek, Z.R., Neo, M.L., Fauvelot,
C. & Huang, D. 2021. Genome skimming resolves the giant clam (Bivalvia: Cardiidae: Tridacninae) tree of
life. Coral Reefs 41: 497-510. https://doi.org/10.1007/s00338-020-02039-w
Theuerkauf, S.J., Barrett, L.T., Alleway, H.K., Costa‐Pierce,
B.A., St. Gelais, A. & Jones, R.C. 2021. Habitat value of bivalve shellfish
and seaweed aquaculture for fish and invertebrates: Pathways, synthesis and
next steps. Reviews in Aquaculture 14(1): 54-72. https://doi.org/10.1111/raq.12584
Timmermans, M.J.T.N., Viberg, C., Martin, G., Hopkins, K. &
Vogler, A.P. 2016. Rapid assembly of taxonomically validated mitochondrial
genomes from historical insect collections. Biological Journal of The
Linnean Society 117(1): 83-95. https://doi.org/10.1111/BIJ.12552
Tørresen, O.K., Star, B., Mier, P., Andrade-Navarro, M.A., Bateman, A.,
Jarnot, P., Gruca, A., Grynberg, M., Kajava, A.V., Promponas, V.J.,
Anisimova, M., Jakobsen, K.S. & Linke, D. 2019. Tandem repeats lead to
sequence assembly errors and impose multi-level challenges for genome and
protein databases. Nucleic Acids Research 47(21): 10994-11006. https://doi.org/10.1093/nar/gkz841
Vaughn, C.C. & Hoellein, T.J. 2018. Bivalve impacts in
freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and
Systematics 49: 183-208. https://doi.org/10.1146/ANNUREV-ECOLSYS-110617-062703
Volden, R., Palmer, T., Byrne, A., Cole, C., Schmitz, R.J., Green,
R.E. & Vollmers, C. 2018. Improving nanopore read accuracy with the R2C2
method enables the sequencing of highly multiplexed full-length single-cell
cDNA. Proceedings of the National Academy of Sciences of the United States
of America 115(39): 9726-9731. https://doi.org/10.1073/pnas.1806447115
Wang, R., Li, X. & Qi, J. 2022. The complete paternally
inherited mitochondrial genomes of three clam species in genus Macridiscus (Bivalvia: Veneridae):
A TDRL model of dimer-mitogenome rearrangement of doubly uniparental
inheritance. Frontiers in Marine Science 9: 1016779. https://doi.org/10.3389/fmars.2022.1016779
Weirather, J.L., De Cesare, M., Wang, Y., Piazza, P., Sebastiano,
V., Wang, X., Buck, D. & Au, K.F. 2017. Comprehensive comparison of Pacific
Biosciences and Oxford Nanopore Technologies and their applications to transcriptome
analysis. F1000Research 6: 100. https://doi.org/10.12688/f1000research.10571.2
Welton, R.A.K., Hoppit, G., Schmidt,
D.N., Witts, J.D. & Moon, B.C. 2024. Reviews and syntheses: The clam before
the storm - A meta-analysis showing the effect of combined climate change
stressors on bivalves. Biogeosciences 21:
223-239. https://doi.org/10.5194/bg-21-223-2024
Wick, R.R. 2019. Badread: Simulation of
error-prone long reads. The Journal of Open Source Software 4(36): 1316. https://doi.org/10.21105/JOSS.01316
Wu, Z., Sainz, A.G. & Shadel, G.S. 2021. Mitochondrial DNA:
Cellular genotoxic stress sentinel. Trends in Biochemical Sciences 46(10):
812-821. https://doi.org/10.1016/j.tibs.2021.05.004
Yang, M., Gong, L., Sui, J. & Li, X. 2019. The complete
mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight
into the deep-sea adaptive evolution of vesicomyids. PLoS ONE 14(9): e0217952. https://doi.org/10.1371/journal.pone.0217952
Zhang, P., Jiang, D., Wang, Y., Yao, X., Luo, Y. & Yang, Z.
2021. Comparison of de novo assembly strategies for bacterial genomes. International
Journal of Molecular Sciences 22(14): 7668. https://doi.org/10.3390/ijms22147668
*Corresponding
author; email: kamarulr@uthm.edu.my