Sains Malaysiana 54(11)(2025): 2675-2684

http://doi.org/10.17576/jsm-2025-5411-08

 

Mitochondrial Genome Sequencing in Marine Bivalves: Progress, Applications, Challenges and Future Directions

(Penjujukan Genom Mitokondria dalam Bivalvia Marin: Kemajuan, Aplikasi, Cabaran dan Hala Tuju Masa Depan)

 

MOHAMAD QAMARUL ABIDIN MOHD ZAWAWI & KAMARUL RAHIM KAMARUDIN*

 

Centre of Research for Sustainable Uses of Natural Resources (SUNR), Faculty of Applied Sciences and Technology (FAST), Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Campus, Pagoh Education Hub, Km 1, Jalan Panchor, 84600 Muar, Johor, Malaysia

 

Received: 14 May 2025/Accepted: 7 November 2025

 

Abstract

Mitochondrial genome sequencing has become a vital tool for understanding marine bivalve evolution, genetics, and adaptation. This review highlights advances from Sanger to next- and third-generation sequencing, which have improved the accuracy and efficiency of mitogenome studies. These developments have uncovered unique features such as doubly uniparental inheritance (DUI) and extensive gene rearrangements, deepening insights into bivalve evolution, phylogenetics, conservation, and aquaculture. Mitogenomics aids in species identification, population analysis, and selective breeding for traits like disease resistance. Despite challenges such as complex architectures, annotation gaps, and unusual inheritance like DUI, emerging technologies such as single-cell sequencing, CRISPR, and omics integration offer new opportunities. As data sharing and collaboration expand, mitochondrial genomics will continue shaping marine conservation and sustainable aquaculture.

Keywords: Aquaculture; bivalvia; conservation genetics; mitochondrial genome sequencing; phylogenetics

 

Abstrak

Penjujukan genom mitokondrion telah menjadi alat penting dalam memahami evolusi, genetik dan penyesuaian bivalvia marin. Ulasan ini mengetengahkan kemajuan daripada kaedah Sanger kepada penjujukan generasi baharu dan generasi ketiga yang telah meningkatkan ketepatan serta kecekapan kajian mitogenom. Perkembangan ini telah mendedahkan ciri unik seperti pewarisan seinduk berganda (DUI) dan penyusunan semula gen yang ketara, sekali gus memperkukuh pemahaman tentang evolusi bivalvia, filogenetik, pemuliharaan dan akuakultur. Mitogenom membantu dalam pengecaman spesies, analisis struktur populasi dan pembiakan terpilih bagi ciri seperti ketahanan penyakit. Meskipun berdepan cabaran berkaitan kerumitan seni bina genom, jurang anotasi dan corak pewarisan luar biasa seperti DUI, kemunculan teknologi baharu seperti penjujukan sel tunggal, CRISPR dan integrasi pelbagai omik menawarkan peluang baharu. Dengan perluasan inisiatif perkongsian data dan kerjasama penyelidikan, genom mitokondrion dijangka terus memacu kemajuan dalam pemuliharaan marin dan amalan akuakultur yang mampan.

Kata kunci: Akuakultur; bivalvia; filogenetik; pemuliharaan genetik; penjujukan genom mitokondria

 

REFERENCES

Abicht, A., Scharf, F., Kleinle, S., Schön, U., Holinski-Feder, E., Horvath, R., Benet-Pagès, A., & Diebold, I. 2018. Mitochondrial and nuclear disease panel (Mito‐aND‐Panel): Combined sequencing of mitochondrial and nuclear DNA by a cost‐effective and sensitive NGS‐based method. Molecular Genetics & Genomic Medicine 6: 1188-1198. https://doi.org/10.1002/mgg3.500

Arteche-López, A., Avila-Fernandez, A., Romero, R., Riveiro-Alvarez, R., López-Martínez, M., Gimenez-Pardo, A., Vélez-Monsalve, C., Gallego-Merlo, J., Garcia-Vara, I., Almoguera, B., Bustamante-Aragonés, A., Blanco-Kelly, F., Tahsin-Swafiri, S., Rodríguez‐Pinilla, E., Mínguez, P., Lorda, I., Trujillo-Tiebas, M. & Ayuso, C. 2021. Sanger sequencing is no longer always necessary based on a single-center validation of 1109 NGS variants in 825 clinical exomes. Scientific Reports 11: 5697. https://doi.org/10.1038/s41598-021-85182-w

Athanasopoulou, K., Boti, M.A., Adamopoulos, P.G., Skourou, P.C. & Scorilas, A. 2022. Third-generation sequencing: The spearhead towards the radical transformation of modern genomics. Life 12(1): 30. https://doi.org/10.3390/life12010030

Baeza, J.A., Minish, J.J. & Michael, T.P. 2024. Assembly of mitochondrial genomes using nanopore long-read technology in three sea chubs (Teleostei: Kyphosidae). Molecular Ecology Resources 25: e14034. https://doi.org/10.1111/1755-0998.14034

Biscotti, M.A, Barucca, M. & Canapa, A. 2018. New insights into the genome repetitive fraction of the Antarctic bivalve Adamussium colbecki. PLoS ONE 13(3): e0194502. https://doi.org/10.1371/journal.pone.0194502

Breton, S., Beaupré, H.D., Stewart, D.T., Piontkivska, H., Karmakar, M., Bogan, A.E., Blier, P.U. & Hoeh, W.R. 2009. Comparative mitochondrial genomics of freshwater mussels (Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: Gender-specific open reading frames and putative origins of replication. Genetics 183(4): 1575-1589. https://doi.org/10.1534/genetics.109.110700

Calus, S.T., Ijaz, U.Z. & Pinto, A.J. 2018. NanoAmpli-Seq: A workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. GigaScience 7(12): giy140. https://doi.org/10.1093/gigascience/giy140

Capt, C., Bouvet, K., Guerra, D., Robicheau, B.M., Stewart, D.T., Pante, E. & Breton, S. 2020. Unorthodox features in two venerid bivalves with doubly uniparental inheritance of mitochondria. Scientific Reports 10: 1087. https://doi.org/10.1038/s41598-020-57975-y

Celaj, A., Markle, J., Danska, J. & Parkinson, J. 2014. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation. Microbiome 2: 39. https://doi.org/10.1186/2049-2618-2-39

Cheng, C., Fei, Z. & Xiao, P. 2023. Methods to improve the accuracy of next-generation sequencing. Frontiers in Bioengineering and Biotechnology 11: 982111. https://doi.org/10.3389/fbioe.2023.982111

De Maio, N., Shaw, L.P., Hubbard, A., George, S., Sanderson, N.D., Swann, J., Wick, R., AbuOun, M., Stubberfield, E., Hoosdally, S., Crook, D.W., Peto, T.E.A., Sheppard, A.E., Bailey, M.J., Read, D.S., Anjum, M.F., Walker, A.S. & Stoesser, N. On behalf of the Rehab Consortium. 2019. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microbial Genomics 5(9): e000294. https://doi.org/10.1099/mgen.0.000294

Feng, J., Guo, Y., Yan, C., Ye, Y., Yan, X., Li, J., Xu, K., Guo, B. & , Z. 2021. Novel gene rearrangement in the mitochondrial genome of Siliqua minima (Bivalvia, Adapedonta) and phylogenetic implications for Imparidentia. PLoS ONE 16(4): e0249446. https://doi.org/10.1371/journal.pone.0249446

Fernández-Pérez, J., Nantón, A., Arias-Pérez, A., Freire, R., Martínez-Patiño, D. & Méndez, J. 2018. Mitochondrial DNA analyses of Donax trunculus (Mollusca: Bivalvia) population structure in the Iberian Peninsula, a bivalve with high commercial importance. Aquatic Conservation: Marine and Freshwater Ecosystems 28(5): 1139-1152. https://doi.org/10.1002/aqc.2929

Fernández-Pérez, J., Nantón, A., Ruiz-Ruano, F., Camacho, J.P.M. & Méndez, J. 2017. First complete female mitochondrial genome in four bivalve species genus Donax and their phylogenetic relationships within the Veneroida order. PLoS ONE 12(9): e0184464. https://doi.org/10.1371/journal.pone.0184464

Ferrarini, M., Moretto, M., Ward, J.A., Šurbanovski, N., Stevanović, V., Giongo, L., Viola, R., Cavalieri, D., Velasco, R., Cestaro, A. & Sargent, D.J. 2013. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics 14: 670. https://doi.org/10.1186/1471-2164-14-670

Ferreira, T. & Rodriguez, S. 2024. Mitochondrial DNA: Inherent complexities relevant to genetic analyses. Genes 15(5): 617. https://doi.org/10.3390/genes15050617

Fukasawa, Y., Ermini, L., Wang, H., Carty, K. & Cheung, M. 2020. LongQC: A quality control tool for third generation sequencing long read data. G3 (Bethesda) 10(4): 1193-1196. https://doi.org/10.1534/g3.119.400864 Erratum in G3 (Bethesda). 2020. 10(11): 4295. doi: 10.1534/g3.120.401778

Gaitán‐Espitia, J.D., Quintero‐Galvis, J.F., Mesas, A. & D’Elía, G. 2016. Mitogenomics of southern hemisphere blue mussels (Bivalvia: Pteriomorphia): Insights into the evolutionary characteristics of the Mytilus edulis complex. Scientific Reports 6: 26853. https://doi.org/10.1038/srep26853

Gerdol, M., Moreira, R., Cruz, F., Gómez-Garrido, J., Vlasova, A., Rosani, U., Venier, P., Naranjo-Ortiz, M.A., Murgarella, M., Greco, S., Balseiro, P., Corvelo, A., Frias, L., Gut, M., Gabaldón, T., Pallavicini, A., Canchaya, C., Novoa, B., Alioto, T.S., Posada, D. & Figueras, A. 2020. Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel. Genome Biology 21: 275. https://doi.org/10.1186/s13059-020-02180-3

Harrison, R.G. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends in Ecology & Evolution 4(1): 6-11. https://doi.org/10.1016/0169-5347(89)90006-2

Harvey, N.R., Albury, C.L., Stuart, S., Benton, M.C., Eccles, D.A., Connell, J.R., Sutherland, H.G., Allcock, R.J.N., Lea, R.A., Haupt, L.M. & Griffiths, L.R. 2019. Ion torrent high throughput mitochondrial genome sequencing (HTMGS). PLoS ONE 14(11): e0224847. https://doi.org/10.1371/journal.pone.0224847

Hein, S.R., Farleigh, K. & Berg, D.J. 2024. Riverscape genomics of the endangered freshwater mussel Lampsilis rafinesqueana. Freshwater Biology 69(10): 1438-1453. https://doi.org/10.1111/fwb.14317

Holt, C.L., Stephens, K.M., Walichiewicz, P., Fleming, K.D., Forouzmand, E. & Wu, S. 2021. Human mitochondrial control region and mtGenome: Design and forensic validation of NGS multiplexes, sequencing and analytical software. Genes 12(4): 599. https://doi.org/10.3390/genes12040599

Hu, T., Chitnis, N., Monos, D. & Dinh, A. 2021. Next-generation sequencing technologies: An overview. Human Immunology 82(11): 801-811. https://doi.org/10.1016/j.humimm.2021.02.012

Hui, M., Nuryanto, A. & Kochzius, M. 2016. Concordance of microsatellite and mitochondrial DNA markers in detecting genetic population structure in the boring giant clam Tridacna crocea across the Indo‐Malay Archipelago. Marine Ecology 38(1): e12389. https://doi.org/10.1111/MAEC.12389

Iannello, M., Bettinazzi, S., Breton, S., Ghiselli, F. & Milani, L. 2021. A naturally heteroplasmic clam provides clues about the effects of genetic bottleneck on paternal mtDNA. Genome Biology and Evolution 13(3): evab022. https://doi.org/10.1093/gbe/evab022

Jiang, S., Li, Z., Li, J., Xu, K. & Ye, Y. 2024. Analysis of genetic diversity and structure of eight populations of Nerita yoldii along the Coast of China based on mitochondrial COI gene. Animals (Basel) 14(5): 718. doi: 10.3390/ani14050718

Jung, H., Winefield, C., Bombarely, A., Prentis, P. & Waterhouse, P. 2019. Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends in Plant Science 24(8): 700-724. https://doi.org/10.1016/j.tplants.2019.05.003

Katsares, V., Tsiora, A., Galinou-Mitsoudi, S. & Imsiridou, A. 2008. Genetic structure of the endangered species Pinna nobilis (Mollusca: Bivalvia) inferred from mtDNA sequences. Biologia 63: 412-417. https://doi.org/10.2478/s11756-008-0061-8

Kinkar, L., Gasser, R.B., Webster, B.L., Rollinson, D., Littlewood, D.T.J., Chang, B.C.H., Stroehlein, A.J., Korhonen, P.K. & Young, N.D. 2021. Nanopore sequencing resolves elusive long tandem-repeat regions in mitochondrial genomes. International Journal of Molecular Sciences 22(4): 1811. https://doi.org/10.3390/ijms22041811

Klirs, Y., Novosolov, M., Gissi, C., Garić, R., Pupko, T., Stach, T. & Huchon, D. 2024. Evolutionary insights from the mitochondrial genome of Oikopleura dioica: Sequencing challenges, RNA editing, gene transfers to the nucleus, and tRNA loss. Genome Biology and Evolution 16(9): evae181. https://doi.org/10.1093/gbe/evae181

Kraft, F. & Kurth, I. 2020. Long-read sequencing to understand genome biology and cell function. The International Journal of Biochemistry & Cell Biology 126: 105799. https://doi.org/10.1016/j.biocel.2020.105799

Kumar, K.R., Cowley, M.J. & Davis, R.L. 2019. Next-generation sequencing and emerging technologies. Seminars in Thrombosis and Hemostasis 45(7): 661-673. https://doi.org/10.1055/s-0044-1786397

Lang, B.F., Beck, N., Prince, S., Sarrasin, M., Rioux, P. & Burger, G. 2023. Mitochondrial genome annotation with MFannot: A critical analysis of gene identification and gene model prediction. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1222186

Le Cam, S., Brémaud, J., Malkócs, T., Kreckelbergh, E., Becquet, V., Dubillot, E., Garcia, P., Breton, S. & Pante, E. 2023. LAMP‐based molecular sexing in a gonochoric marine bivalve (Macoma balthica rubra) with divergent sex‐specific mitochondrial genomes. Ecology and Evolution 13: e10320. https://doi.org/10.1002/ece3.10320

Lee, Y., Kwak, H., Shin, J., Kim, S., Kim, T. & Park, J. 2019. A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Molecular Phylogenetics and Evolution 139: 106533. https://doi.org/10.1016/j.ympev.2019.106533

Lee, Y., Ni, G., Shin, J., Kim, T., Kern, E.M.A., Kim, Y., Kim, S.C., Chan, B., Goto, R., Nakano, T. & Park, J.K. 2021. Phylogeography of Mytilisepta virgata (Mytilidae: Bivalvia) in the northwestern Pacific: Cryptic mitochondrial lineages and mito-nuclear discordance. Molecular Phylogenetics and Evolution 157: 107037. https://doi.org/10.1016/j.ympev.2020.107037

Legati, A., Zanetti, N., Nasca, A., Peron, C., Lamperti, C., Lamantea, E. & Ghezzi, D. 2021. Current and new next-generation sequencing approaches to study mitochondrial DNA. The Journal of Molecular Diagnostics 23(6): 732-741. https://doi.org/10.1016/j.jmoldx.2021.03.002

Li, F., Zhang, Y., Zhong, T., Heng, X., Ao, T., Gu, Z., Wang, A., Liu, C. & Yang, Y. 2023. The complete mitochondrial genomes of two rock scallops (Bivalvia: Spondylidae) indicate extensive gene rearrangements and adaptive evolution compared with Pectinidae. International Journal of Molecular Sciences 24(18): 13844. https://doi.org/10.3390/ijms241813844

Li, Y., Altamia, M.A., Shipway, J.R., Brugler, M.R., Bernardino, Â.F., De Brito, T.L., Lin, Z., Da Silva Oliveira, F.A., Sumida, P., Smith, C.R., Trindade-Silva, A., Halanych, K.M. & Distel, D.L. 2022. Contrasting modes of mitochondrial genome evolution in sister taxa of wood-eating marine bivalves (Teredinidae and Xylophagaidae). Genome Biology and Evolution 14(6): evac089. https://doi.org/10.1093/gbe/evac089

Liu, Z.J. & Cordes, J.F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238(1-4): 1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027

Logsdon, G.A., Vollger, M.R. & Eichler, E.E. 2020. Long-read human genome sequencing and its applications. Nature Reviews Genetics 21: 597-614. https://doi.org/10.1038/s41576-020-0236-x

Lubośny, M., Przyłucka, A., Śmietanka, B. & Burzyński, A. 2020. Semimytilus algosus: First known hermaphroditic mussel with doubly uniparental inheritance of mitochondrial DNA. Scientific Reports 10: 11256. https://doi.org/10.1038/s41598-020-67976-6

Lucentini, L., Plazzi, F., Sfriso, A.A., Pizzirani, C., Sfriso, A. & Chiesa, S. 2020. Additional taxonomic coverage of the doubly uniparental inheritance in bivalves: Evidence of sex-linked heteroplasmy in the razor clam Solen marginatus, but not in the lagoon cockle Cerastoderma glaucum. Journal of Zoological Systematics and Evolutionary Research 58(2): 561-570. https://doi.org/10.1111/jzs.12386

Martínez, M., Harms, L., Abele, D. & Held, C. 2023. Mitochondrial heteroplasmy and PCR amplification bias lead to wrong species delimitation with high confidence in the South American and Antarctic marine bivalve Aequiyoldia eightsii species complex. Genes 14(4): 935. https://doi.org/10.3390/genes14040935

Masanja, F., Yang, K., Xu, Y., He, G., Liu, X., Xu, X., Xiaoyan, J., Xin, L., Mkuye, R., Deng, Y. & Zhao, L. 2023. Impacts of marine heat extremes on bivalves. Frontiers in Marine Science 10. https://doi.org/10.3389/fmars.2023.1159261

Midha, M., Wu, M. & Chiu, K. 2019. Long-read sequencing in deciphering human genetics to a greater depth. Human Genetics 138: 1201-1215. https://doi.org/10.1007/s00439-019-02064-y

Olivier, A.V.D.S., Jones, L., Vay, L.L., Christie, M., Wilson, J. & Malham, S.K. 2018. A global review of the ecosystem services provided by bivalve aquaculture. Reviews in Aquaculture 12(1): 3-25. https://doi.org/10.1111/RAQ.12301

Ozawa, G., Shimamura, S., Takaki, Y., Yokobori, S., Ohara, Y., Takishita, K., Maruyama, T., Fujikura, K. & Yoshida, T. 2017. Updated mitochondrial phylogeny of Pteriomorph and Heterodont bivalvia, including deep-sea chemosymbiotic Bathymodiolus mussels, vesicomyid clams and the thyasirid clam Conchocele cf. bisecta. Marine Genomics 31: 43-52. https://doi.org/10.1016/j.margen.2016.09.003

Pakendorf, B. & Stoneking, M. 2005. Mitochondrial DNA and human evolution. Annual Review of Genomics and Human Genetics 6: 165-183. https://doi.org/10.1146/ANNUREV.GENOM.6.080604.162249

Palaiokostas, C. 2021. Predicting for disease resistance in aquaculture species using machine learning models. Aquaculture Reports 20: 100660. https://doi.org/10.1016/J.AQREP.2021.100660

Pareek, C.S., Smoczyński, R. & Tretyn, A. 2011. Sequencing technologies and genome sequencing. Journal of Applied Genetics 52: 413-435. https://doi.org/10.1007/s13353-011-0057-x

Petit-Marty, N., Vázquez‐Luis, M. & Hendriks, I.E. 2020. Use of the nucleotide diversity in COI mitochondrial gene as an early diagnostic of conservation status of animal species. Conservation Letters 14(1): e12756. https://doi.org/10.1111/conl.12756

Plazzi, F., Puccio, G. & Passamonti, M. 2016. Comparative large-scale mitogenomics evidences clade-specific evolutionary trends in mitochondrial DNAs of bivalvia. Genome Biology and Evolution 8(8): 2544-2564. https://doi.org/10.1093/gbe/evw187

Qi, H., Li, L. & Zhang, G. 2021. Construction of a chromosome‐level genome and variation map for the Pacific oyster Crassostrea gigas. Molecular Ecology Resources 21(5): 1670-1685. https://doi.org/10.1111/1755-0998.13368

Raghavan, V., Kraft, L., Mesny, F. & Rigerte, L. 2022. A simple guide to de novo transcriptome assembly and annotation. Briefings in Bioinformatics 23(2): bbab563. https://doi.org/10.1093/bib/bbab563

Runnel, K., Abarenkov, K., Copoț, O., Mikryukov, V., Kõljalg, U., Saar, I. & Tedersoo, L. 2022. DNA barcoding of fungal specimens using PacBio long‐read high‐throughput sequencing. Molecular Ecology Resources 22(8): 2871-2879. https://doi.org/10.1111/1755-0998.13663

Salzberg, S.L. 2019. Next-generation genome annotation: we still struggle to get it right. Genome Biology 20: 92. https://doi.org/10.1186/s13059-019-1715-2

Schloss, P.D., Jenior, M.L., Koumpouras, C.C., Westcott, S.L. & Highlander, S.K. 2016. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ PrePrints 4: e1869. https://doi.org/10.7287/peerj.preprints.778v2

Serb, J.M. & Lydeard, C. 2003. Complete mtDNA sequence of the North American freshwater mussel, Lampsilis ornata (Unionidae): An examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Molecular Biology and Evolution 20(11): 1854-1866. https://doi.org/10.1093/MOLBEV/MSG218

Smith, C.H. 2021. A high-quality reference genome for a parasitic bivalve with doubly uniparental inheritance (Bivalvia: Unionida). Genome Biology and Evolution 13(3): evab029. https://doi.org/10.1093/gbe/evab029

Smith, C.H., Mejia-Trujillo, R., Breton, S., Pinto, B.J., Kirkpatrick, M. & Havird, J.C. 2023. Mitonuclear sex determination? Empirical evidence from bivalves. Molecular Biology and Evolution 40(11): msad240. https://doi.org/10.1093/molbev/msad240

Song, M., Yan, C. & Li, J. 2022. MEANGS: An efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data. Briefings in Bioinformatics 23(1): bbab538. https://doi.org/10.1093/bib/bbab538

Steeves, L.E., Filgueira, R., Guyondet, T., Chassé, J. & Comeau, L. 2018. Past, present, and future: Performance of two bivalve species under changing environmental conditions. Frontiers in Marine Science 5. https://doi.org/10.3389/fmars.2018.00184

Stewart, D.T., Robicheau, B.M., Youssef, N., Garrido-Ramos, M.A., Chase, E.E. & Breton, S. 2021. Expanding the search for sperm transmission elements in the mitochondrial genomes of bivalve mollusks. Genes 12(8): 1211. https://doi.org/10.3390/genes12081211

Tan, E.Y.W., Quek, Z.R., Neo, M.L., Fauvelot, C. & Huang, D. 2021. Genome skimming resolves the giant clam (Bivalvia: Cardiidae: Tridacninae) tree of life. Coral Reefs 41: 497-510. https://doi.org/10.1007/s00338-020-02039-w

Theuerkauf, S.J., Barrett, L.T., Alleway, H.K., Costa‐Pierce, B.A., St. Gelais, A. & Jones, R.C. 2021. Habitat value of bivalve shellfish and seaweed aquaculture for fish and invertebrates: Pathways, synthesis and next steps. Reviews in Aquaculture 14(1): 54-72. https://doi.org/10.1111/raq.12584

Timmermans, M.J.T.N., Viberg, C., Martin, G., Hopkins, K. & Vogler, A.P. 2016. Rapid assembly of taxonomically validated mitochondrial genomes from historical insect collections. Biological Journal of The Linnean Society 117(1): 83-95. https://doi.org/10.1111/BIJ.12552

Tørresen, O.K., Star, B., Mier, P., Andrade-Navarro, M.A., Bateman, A., Jarnot, P., Gruca, A., Grynberg, M., Kajava, A.V., Promponas, V.J., Anisimova, M., Jakobsen, K.S. & Linke, D. 2019. Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Research 47(21): 10994-11006. https://doi.org/10.1093/nar/gkz841

Vaughn, C.C. & Hoellein, T.J. 2018. Bivalve impacts in freshwater and marine ecosystems. Annual Review of Ecology, Evolution, and Systematics 49: 183-208. https://doi.org/10.1146/ANNUREV-ECOLSYS-110617-062703

Volden, R., Palmer, T., Byrne, A., Cole, C., Schmitz, R.J., Green, R.E. & Vollmers, C. 2018. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proceedings of the National Academy of Sciences of the United States of America 115(39): 9726-9731. https://doi.org/10.1073/pnas.1806447115

Wang, R., Li, X. & Qi, J. 2022. The complete paternally inherited mitochondrial genomes of three clam species in genus Macridiscus (Bivalvia: Veneridae): A TDRL model of dimer-mitogenome rearrangement of doubly uniparental inheritance. Frontiers in Marine Science 9: 1016779. https://doi.org/10.3389/fmars.2022.1016779

Weirather, J.L., De Cesare, M., Wang, Y., Piazza, P., Sebastiano, V., Wang, X., Buck, D. & Au, K.F. 2017. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research 6: 100. https://doi.org/10.12688/f1000research.10571.2

Welton, R.A.K., Hoppit, G., Schmidt, D.N., Witts, J.D. & Moon, B.C. 2024. Reviews and syntheses: The clam before the storm - A meta-analysis showing the effect of combined climate change stressors on bivalves. Biogeosciences 21: 223-239. https://doi.org/10.5194/bg-21-223-2024

Wick, R.R. 2019. Badread: Simulation of error-prone long reads. The Journal of Open Source Software 4(36): 1316. https://doi.org/10.21105/JOSS.01316

Wu, Z., Sainz, A.G. & Shadel, G.S. 2021. Mitochondrial DNA: Cellular genotoxic stress sentinel. Trends in Biochemical Sciences 46(10): 812-821. https://doi.org/10.1016/j.tibs.2021.05.004

Yang, M., Gong, L., Sui, J. & Li, X. 2019. The complete mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive evolution of vesicomyids. PLoS ONE 14(9): e0217952. https://doi.org/10.1371/journal.pone.0217952

Zhang, P., Jiang, D., Wang, Y., Yao, X., Luo, Y. & Yang, Z. 2021. Comparison of de novo assembly strategies for bacterial genomes. International Journal of Molecular Sciences 22(14): 7668. https://doi.org/10.3390/ijms22147668

 

*Corresponding author; email: kamarulr@uthm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous

next